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Language Definitions

What does it mean for a programming 
language to exist?

The “standard” answer is exemplified by C.

Informal description (a la K&R, say).

A “reference” implementation (gcc, say).

Social processes such as standardization 
committees.



Language Definitions

The PL research community has developed 
better definitional methods.

Classically, various grammatical formalisms, 
denotational and axiomatic semantics.

Most successfully, type systems and 
operational semantics.

Nearly all theoretical studies use these 
methods! (e.g., every other POPL paper)



Language Definitions

What good is a language definition?

Precise specification for programmers.

Ensures compatibility among compilers.

Admits rigorous analysis of properties.

The Definition of Standard ML has proved 
hugely successful in these respects!



Language Definitions

But a language definition is also a burden!

Someone has to maintain it.

Not easy to make changes.

Definitions can be mistaken too!

Internally incoherent.

Difficult or impossible to implement.



Language Definitions

A definition alone is not enough!  Must 
maintain a body of meta-theory as well.

Type safety: coherence of static and 
dynamic semantics.

Decidability of type checking, determinacy 
of execution, ....

Developing and maintaining the meta-theory 
is onerous.



Mechanized Definitions

Some of the burden can be alleviated 
through mechanization.

Formalize the definition in a logical 
framework.

Automatically or semi-automatically verify 
key meta-theoretic properties.

But can this be done at scale?



Mechanized Definitions

Yes, using LF/Twelf!

Formalize definition in LF.

State meta-theorems relationally in LF.

Use Twelf to prove “totality”.

Remarkably, this approach works well both 
“in the small” and “in the large”!



LF Methodology

Establish a compositional bijection between

objects of each syntactic category of 
object language

canonical forms of associated types of 
the LF lambda calculus

“Compositional” means “commutes with 
substitution” (aka “natural”).



LF Methodology

Here the syntactic categories include

abstract syntax, usually including binding 
and scoping conventions

typing derivations

evaluation derivations

The latter two cases give rise to the slogan 
“judgements as types”.



Example: STLC

% abstract syntax

tp : type.

b : tp.

arrow : tp -> tp -> tp.

tm : type.

lam : tp -> (tm -> tm) -> tm.

app : tm -> tm -> tm.



Example: STLC

% typing (excerpt)

of : tm -> tp -> type.

of_lam : 
  ({x : tm}{dx : of x T} of (F x) U) -> 
  of (lam T F) (arr T U)

of_app : 
  of E1 (arr T U) -> of E2 T ->
  of (app E1 E2) U.



Example: STLC

% evaluation (excerpt)

step : tm -> tm -> type.

beta : 
  step (app (lam T F) E) (F E).

fun : 
  step E1 E1’ -> step (app E1 E2) (app E1’ E2).



Adequacy Theorem

Cat’y Rep’n Contexts/World

T type T : tp

E term E : tm x : tm

E : T D : of E T x : tm,
dx : of x U



Meta-Reasoning

Adequacy ensures that we can reason about 
the object language by analyzing canonical 
forms of appropriate LF type.

Canonical forms are long βη normal forms.

Structural induction, parallel and 
lexicographic extension to tuples.

Applies to informal and formal reasoning!



Meta-Reasoning in Twelf

Twelf supports checking of proofs of Pi2 
(∀∃) propositions over canonical forms in a 
specified class of contexts (world).

Enough for preservation, progress, ...

These are totality assertions for a relation 
between inputs (∀/+) and outputs (∃/-)!

Polarity notation is an unfortunate relic.



Relational Meta-Theory

Preservation Theorem as a relation:
pres : of E T -> step E E’ -> of E’ T -> type.

Axiomatize this relation:
pres_beta :
  pres (of_app (of_lam D) D’)
        beta
        (D _ D’).
etc.



Relational Meta-Theory

Ask Twelf to verify the totality of the 
relation representing the theorem.

Specify the worlds to consider.

Specify mode of the relation.

Specify induction principle to use.

Checks that all cases are covered, and 
induction is used appropriately.



Relational Meta-Theory

For preservation this consists of decl’s

%mode pres +D1 +D2 -D3
%worlds () (pres _ _ _)
%total D (pres _ D _)

Twelf performs a mode check, coverage 
check, and termination check.

Errors are similar to ML match errors.



Relational Meta-Theory

The worlds for preservation are empty.

Consider only closed terms in this case.

The mode specifies 
∀ typing derivs ∀ steps ∃ typing deriv

Totality specifies proof by induction on 
transition step.



Scaling Up

Well and good, but does it scale?

Yes, surprisingly well, but ...

Some language features are hard to 
handle in LF.

Some meta-theory is trickier than this.

But we use Twelf daily in our work at CMU!



Some Examples

TALT, a full-scale certified object code 
format with a generic safety policy.

Compilation through closure conversion, type 
safety for Classical S5 for dist’d prog’ing.

First, and only, solution to the POPLmark 
Challenge to verify meta-theory of F<:.

Type safety (almost), regularity for HS 
semantics of Standard ML.



Adding A Store

Ideally, locations would be treated like 
variables.

Location typing consists of assumptions 
about types of locations.

Store contents consists of assumptions 
about the values of locations.

But this requires linearity, which we do not 
currently have at our disposal.



Adding A Store

Manage stores explicitly as mappings from 
locations to types or values.

Explicit lookup, update, extension.

Unpleasant, technically, but unavoidable.

How to represent the typing judgment?

Where does the location typing go?



Adding A Store

The “obvious” approach is to add a location 
typing to the typing judgement:

      of : lt -> tm -> tp -> type.

We suppress here the details of how the 
location typing is managed.

Trust me, they’re ugly.



Adding A Store

For what contexts is the encoding adequate?
The “obvious” choice would seem to be

  x : tm, dx : of L x T

Typing rules change accordingly:
of_lam : 
  ({ x : tm }{ dx : of L x T } of L (F x) U) ->
    of L (lam T F) (arrow T U).



Meta-Theory for Stores

Unfortunately, we cannot push through 
proofs of the required meta-theory!

Example: weakening of the location typing.

Extending the store with new locations 
preserves typing.

Required for type safety.



Meta-Theory for Stores

Relational formulation of weakening:

weaken : 
  of L E T -> ext L L’ -> of L’ E T -> type.

Formalize a proof by induction on the first 
typing derivation.
%mode weaken +D1 +D2 -D3
%total D (weaken D _ _)



Meta-Theory for Stores

Consider the case of a lambda:
weaken_lambda :
  weaken (of_lam T D) X (of_lam T D’) <-
   { x : tm }{ dx : of L’ x T} 
    (weaken (D x dx) X (D’ x dx)).

But this clause is not type-correct!

D x : of L x T -> ..., but dx : of L’ x T!

There is no fcn of L’ x T -> of L x T.



Meta-Theory for Stores

The “trick” is to remove the location typing 
from assumptions!

Side-steps the mismatch just observed.

But is substitution still valid?

Illustrates a recurring technique of isolating 
variables for special treatment.



Adding A Store, Revisited

Retain location typing on main judgement:
of : lt -> tm -> tp -> type.

Add a typing judgement for assumptions:
assm : tm -> tp -> type.

Consider worlds of the form
x : tm, dx : assm x T



Adding A Store, Revisited

Add an explicit “hypothesis” rule:
of_var : assm E T -> of L E T.

Revise typing rules accordingly:
of_lam :
 ( { x : tm } { dx : assm x T } of L (F x) U )
   -> of L (lam T F) (arrow T U).



Meta-Theory For Stores

Penalty: we now must prove that 
substitution preserves typing.

subst_pres:
  ({x : tm}{dx : assm x T} of L (F x) U) ->
   of L E T -> of L (F E) U.

Why does this work?



Meta-Theory For Stores

Proof is by structural induction on F.

If it is constant, [x] M, substitution of E 
has no effect, so result follows from 
typing of M independently of x.

If it is the identity, [x]x, the typing 
derivation for E suffices.

Otherwise proceed by induction.



Reasoning About 
Variables

Quite often one wishes to prove a meta-
theorem about the behavior of variables.

eg, substitution preserves typing

eg, narrowing a variable to a subtype

Since the context is typically represented 
only implicitly in LF, these can be tricky.



Reasoning About 
Variables

For example, why does this type ...

  ({x : tm}{dx : assm x T} of (F x) U) ->
   of E T -> of (F E) U -> type.

... codify this substitution principle?

if G,x:T,G’ |- F : U and G |- E : T, 
then G,G’ |- [E/x]F : U



Reasoning About 
Variables

The key is permutation, which permits us to 
regard G,x:T,G’ as G,G’,x:T in STLC.

When permutation is available, we can 
readily use relational methods to prove 
properties of variables.

Any given variable is implicitly “last”.

But what if we don’t have permutation?



Reasoning About 
Variables

From the POPLmark challenge for F<:,
if G, X<:Q, G’ |- A <: B, and G |- P <: Q,
then G, X<:P, G’ |- A <: B.

Stated relationally, as for substitution,
narrow : 
  ( {X:tp} {dX : assm X Q} sub A B ) ->
  sub P Q ->
  ( {X:tp} {dX : assm X P} sub A B ) ->
  type.



Reasoning About 
Variables

But this statement cannot be proved!

Descending into a binder introduces an 
additional assumption, say Y<:X.

Cannot permute Y<:X before X<:Q!

So we must consider a general G’, which 
cannot be done uniformly in LF.

The context G’ is not a “single thing”.



Reasoning About 
Variables

Adequacy for F<: is for worlds built from
declaration pairs of the form
X : tp, dX : assm X T

For example, 
tlam_of :
  ({X : tp}{dX : assm X T} of (F X) (U X)) ->
    of (tlam T F) (all T U).



Reasoning About 
Variables

We cannot, in general, permute such pairs 
past one another due to dependencies.

But, a limited form of permutation is OK:

{ X : tp } { Y : tp }
{ dY : assm Y X } { dX : assm X P }

The strategy is to permit “mixed” 
permutations so that an assm can be last!



Reasoning About 
Variables

Revised relational statement of narrowing 
permits X to be separated from dX:

{X:tm} ({dX : assm X Q} sub A B) ->
        sub P Q ->
        ({dX : assm X P} sub A B) ->
        type.

But now assm X Q no longer ensures that X 
is a variable!



Reasoning About 
Variables

The sol’n is to “tag” each variable as such:
var : tm -> type.

Then “link” each variable to an assm:
var_assm : var X -> assm X T -> type.

Consider context blocks of these forms:

X : tp, vX : var X

dX : assm X T, dvX : var_assm vX dX



Solving POPLmark

This was the hardest problem in the 
POPLmark challenge!

The rest was handled easily using 
standard methods with no serious 
complications.

This solution is a simplification of another 
that was much harder.

We finished the challenge in one week!



Scaling Up

A full-scale language such as SML presents 
many other complications.

Complex scoping rules.

Type inference, overloading.

Pattern matching.

Coercive signature matching.



Scaling Up

One solution is to formalize elaboration of 
the external to an internal language.

Handle scope resolution, type inference, 
overloading, etc.

Target is chose to be amenable to 
formalization.

Examples: Russo, Harper-Stone, Epigram, ...



Scaling Up

Properties such as type safety are proved 
for the internal language.

Using methods sketched earlier.

These are transferred to external language 
by proving that a successful elaboration is 
well-typed.

Actually, has a principal type.



Formalizing Standard ML

We are in the process of doing this for the 
HS semantics of ML.

Progress, regularity for the IL done.

Preservation for the IL mostly done.

Elaboration is still “to do”.

One significant complication arose ...



A Complication

The HS IL has non-trivial type equality.

eg, to handle sharing spec’s, type 
definitions

Typical meta-theorems need inversion 
properties of typing and type equality.

eg, if A->B = A’->B’, then A=A’ and B=B’



A Complication

These are non-obvious for a “declarative” 
presentation of equality.

Transitivity obstructs a direct proof.

We rely on an “algorithmic” presentation.

Inversion is easy.

Completeness wrt declarative left open.



Conclusions

Mechanized meta-theory for language 
definitions is feasible today.

Requires some facility with LF and Twelf, but 
in the main it is smooth sailing.

For this to work well we must formulate a 
definition with mechanization in mind.



Questions?


