Mechanizing Language
Definitions

Robert Harper
Carnegie Mellon University
June, 2005

Acknowledgements

@ This talk represents joint work with
@ Michael Ashley-Rolman
o Karl Crary
@ Frank Pfenning

® Thanks to TTI-C/UC for the invitation!

Language Definitions

@ What does it mean for a programming
language to exist?

® The “standard” answer is exemplified by C.
@ Informal description (a la K&R, say).
@ A "reference” implementation (gcc, say).

@ Social processes such as standardization
committees.

Language Definitions

® The PL research community has developed
better definitional methods.

@ Classically, various grammatical formalisms,
denotational and axiomatic semantics.

@ Most successfully, type systems and
operational semantics.

® Nearly all theoretical studies use these
methods! (e.g., every other POPL paper)

Language Definitions

@ What good is a language definition?
@ Precise specification for programmers.
@ Ensures compatibility among compilers.
@ Admits rigorous analysis of properties.

@ The Definition of Standard ML has proved
hugely successful in these respects!

Language Definitions

@ But a language definition is also a burden!
® Someone has to maintain it.
@ Not easy to make changes.

@ Definitions can be mistaken too!
@ Internally incoherent.

@ Difficult or impossible to implement.

Language Definitions

@ A definition alone is not enough! Must
maintain a body of meta-theory as well.

@ Type safety: coherence of static and
dynamic semantics.

@ Decidability of type checking, determinacy
of execution, ...

@ Developing and maintaining the meta-theory
IS onerous.

Mechanized Definitions

® Some of the burden can be alleviated
through mechanization.

@ Formalize the definition in a logical
framework.

@ Automatically or semi-automatically verify
key meta-theoretic properties.

@ But can this be done at scale?

Mechanized Definitions

@ Yes, using LF/Twelf!
@ Formalize definition in LF.
® State meta-theorems relationally in LF.
@ Use Twelf to prove “totality”.

@ Remarkably, this approach works well both
"in the small” and “in the large”!

LF Methodology

@ Establish a compositional bijection between

@ objects of each syntactic category of
object language

@ canonical forms of associated types of
the LF lambda calculus

@ "Compositional” means “commutes with
substitution” (aka “natural®).

LF Methodology

@ Here the syntactic categories include

@ abstract syntax, usually including binding
and scoping conventions

@ typing derivations
@ evaluation derivations

@ The latter two cases give rise to the slogan
"judgements as types”.

Example: STLC

% abstract syntax

tp : type.

b <P

arrow : tp -> tp -> tp.

tm : type.

lam : tp -> (tm -> tm) -> tm.

app : tTm -> tm -> tm.

Example: STLC

% typing (excerpt)
of : tm -> tp -> type.

of _lam :
(§x : tm}dx : of x T} of (F x) U) ->
of (lam T F) (arr T U)

of _app :
of El (arr T U) -> of E2 T ->
of (app El E2) U.

Example: STLC

% evaluation (excerpt)
step : tm -> tm -> type.

beta :
step (app (lam T F) E) (F E).

fun :
step El E1' -> step (app El E2) (app El’' E2).

Adequacy Theorem

T type L

E term | E:tm X : tm

X3 .1tm,
dx : of x U

E:T | DiDrEEN

Meta-Reasoning

@® Adequacy ensures that we can reason about
the object language by analyzing canonical
forms of appropriate LF type.

@ Canonical forms are long n normal forms.

@ Structural induction, parallel and
lexicographic extension to tuples.

@ Applies to informal and formal reasoning

Meta-Reasoning in Twelf

@ Twelf supports checking of proofs of Pi:
(V3) propositions over canonical forms in a
specified class of contexts (world).

@ Enough for preservation, progress, ...

@ These are totality assertions for a relation
between inputs (V/+) and outputs (3/-)!

@ Polarity notation is an unfortunate relic.

Relational Meta-Theory

® Preservation Theorem as a relation:
pres : of ET -> step EE" -> of E' T -> type.

@ Axiomatize this relation:
pres_beta :
pres (of_app (of_lam D) D)
beta
(D =5l
etc.

Relational Meta-Theory

@ Ask Twelf to verify the totality of the
relation representing the theorem.

@ Specify the worlds to consider.
@ Specify mode of the relation.
@ Specify induction principle fo use.

® Checks that all cases are covered, and
induction is used appropriately.

Relational Meta-Theory

@ For preservation this consists of decls

7%mode pres +D1 +D2 -D3
Zworlds () (pres)
Z%total D (pres _ D _)

@ Twelf performs a mode check, coverage
check, and termination check.

® Errors are similar to ML match errors.

Relational Meta-Theory

@ The worlds for preservation are empty.
@ Consider only closed terms in this case.

@ The mode specifies
V typing derivs V steps 1 typing deriv

o Totality specifies proof by induction on
transition step.

Scaling Up

@ Well and good, but does it scale?
@ Yes, surprisingly well, but ...

@ Some language features are hard to
handle in LF.

® Some meta-theory is trickier than this.

@ But we use Twelf daily in our work at CMU!

Some Examples

® TALT, a full-scale certified object code
format with a generic safety policy.

@ Compilation through closure conversion, type
safety for Classical S5 for distd prog'ing.

@ First, and only, solution tfo the POPLmark
Challenge to verify meta-theory of F<:.

@ Type safety (almost), regularity for HS
semantics of Standard ML.

Adding A Store

@ Ideally, locations would be treated like
variables.

@ Location typing consists of assumptions
about types of locations.

@ Store contents consists of assumptions
about the values of locations.

@ But this requires linearity, which we do not
currently have at our disposal.

Adding A Store

@ Manage stores explicitly as mappings from
locations to types or values.

@ Explicit lookup, update, extension.
@ Unpleasant, technically, but unavoidable.
@ How to represent the typing judgment?

@ Where does the location typing go?

Adding A Store

® The “obvious” approach is to add a location
typing to the typing judgement:

of : It -> tm -> tp -> type.

@ We suppress here the details of how the
location typing is managed.

® Trust me, theyTe ugly.

Adding A Store

@ For what contexts is the encoding adequate?
The “obvious” choice would seem to be

X5 tmadx : of LT

@ Typing rules change accordingly:
of_lam :
(§ X : tmagsdx80F Lo I of L' (F'%x) U) ->
of L (lam T F) (arrow T U).

Meta-Theory for Stores

@ Unfortunately, we cannot push through
proofs of the required meta-theory!

@ Example: weakening of the location typing.

@ Extending the store with new locations
preserves typing.

@ Required for type safety.

Meta-Theory for Stores

@ Relational formulation of weakening:

weaken :
of LET ->extL L ->0of L ET -> type.

@ Formalize a proof by induction on the first
typing derivation.
7%mode weaken +Dl1 +D2 -D3
%total D (weaken D _ _)

Meta-Theory for Stores

® Consider the case of a lambda:
weaken_lambda :
weaken (of_lam T D) X (of __lam T D') «-
fscttm 34 dx : of T §
(weaken X (D' x dx)).

@ But this clause is not type-correct!
o D x ofllax TR B dx . of L7x T!

@ Thereisno fcnof . xT ->0of xT.

Meta-Theory for Stores

® The “trick” is to remove the location typing
from assumptions!

@ Side-steps the mismatch just observed.
@ But is substitution still valid?

@ Illustrates a recurring technique of isolating
variables for special treatment.

Adding A Store, Revisited

@ Retain location typing on main judgement:
of : It -> tm -> tp -> type.

@ Add a typing judgement for assumptions:
assm : tm -> tp -> type.

® Consider worlds of the form
X : tm, dx : assm x T

Adding A Store, Revisited

@ Add an explicit “hypothesis” rule:
of_var : assm ET ->of LET.

@ Revise typing rules accordingly:
of_lam :
(§$x:tm Fede: assm xT } aF F(F x) U)
->of L (lam T F) (arrow T U).

Meta-Theory For Stores

@ Penalty: we now must prove that
substitution preserves typing.

subst_pres:
(§x : tm}idx : assm x T} of L (F x) U) ->
of L EXT A wEil (F E)'O

® Why does this work?

Meta-Theory For Stores

@ Proof is by structural induction on F.

o If it is constant, [x] M, substitution of E
has no effect, so result follows from
typing of M independently of x.

o If it is the identity, [x]x, the typing
derivation for E suffices.

@ Otherwise proceed by induction.

Reasoning About
Variables

@ Quite often one wishes to prove a meta-
theorem about the behavior of variables.

@ eg, substitution preserves typing
@ eg, narrowing a variable to a subtype

@ Since the context is typically represented
only implicitly in LF, these can be ftricky.

Reasoning About
Variables

@ For example, why does this type ..

({x : tm}idx : assm x T} of (F x) U) ->
of ET -> of (F E) U -> type.

@ ... codify this substitution principle?

if and y
then

Reasoning About
Variables

@ The key is permutation, which permits us to
regard as in STLC.

® When permutation is available, we can
readily use relational methods to prove
properties of variables.

@ Any given variable is implicitly “last”.

® But what if we dont have permutation?

Reasoning About

Variables
@ From the POPLmark challenge for I,
it , and

then

@ Stated relationally, as for substitution,
narrow :
({X:tp} 1dX : assm X Q} sub A B) ->
sub P Q ->
({X:tp} {dX : assm X P} sub A B) ->

type.

Reasoning About
Variables

@ But this statement cannot be proved!

@ Descending into a binder introduces an
additional assumption, say

@ Cannot permute before !

@ So we must consider a general &, which
cannot be done uniformly in LF.

@ The context G’ is not a “single thing”.

Reasoning About
Variables

@ Adequacy for Is for worlds built from
declaration pairs of the form
X:tp, dX:assm XT

@ For example,
tlam_of :
({X : tpydX : assm X T} of (F X) (U X)) ->
of (tlam T F) (all T V).

Reasoning About
Variables

@ We cannoft, in general, permute such pairs
past one another due fo dependencies.

@ But, a limited form of permutation is OK:

X i tp g ¢ Y IR
§dY : assmY X} §dX : assm X P }

® The strategy is to permit "mixed”
permutations so that an assm can be lasf!

Reasoning About
Variables

@ Revised relational statement of narrowing
permits X to be separated from dX:

{X:tm} ({dX : assm X Q} sub A B) ->
sub P Q ->
({dX : assm X P} sub A B) ->

type.

@ But now assm X Q no longer ensures that X
IS a variable!

Reasoning About
Variables

@ The sol'n is to “tag” each variable as such:
var : tm -> type.

® Then "link” each variable to an assm:
var_assm : var X -> assm X T -> type.

® Consider context blocks of these forms:
@ X : tp, vX : var X

@dX : assm X T, dvX : var_assm vX dX

Solving POPLmark

@ This was the hardest problem in the
POPLmark challenge!

@ The rest was handled easily using
standard methods with no serious
complications.

@ This solution is a simplification of another
that was much harder.

@ We finished the challenge in one week!

Scaling Up

@ A full-scale language such as SML presents
many other complications.

@ Complex scoping rules.
@ Type inference, overloading.
@ Pattern matching.

@ Coercive signature matching.

Scaling Up

@ One solution is to formalize elaboration of
the external to an internal language.

@ Handle scope resolution, type inference,
overloading, eftc.

@ Target is chose to be amenable to
formalization.

@ Examples: Russo, Harper-Stone, Epigram, ...

Scaling Up

@ Properties such as type safety are proved
for the internal language.

@ Using methods sketched earlier.

@ These are transferred to external language
by proving that a successful elaboration is
well-typed.

@ Actually, has a principal type.

Formalizing Standard ML

@ We are in the process of doing this for the
HS semantics of ML.

@ Progress, regularity for the IL done.
@ Preservation for the IL mostly done.
@ Elaboration is still “to do”.

@ One significant complication arose ...

A Complication

@ The HS IL has non-trivial type equality.

@ eg, to handle sharing specs, type
definitions

@ Typical meta-theorems need inversion
properties of typing and type equality.

@ eq, if = , then A=A and B=

A Complication

® These are non-obvious for a "declarative”
presentation of equality.

@ Transitivity obstructs a direct proof.
@ We rely on an “algorithmic” presentation.
@ Inversion is easy.

@ Completeness wrt declarative left open.

Conclusions

@ Mechanized meta-theory for language
definitions is feasible today.

@ Requires some facility with LF and Twelf, but
In the main it is smooth sailing.

@ For this to work well we must formulate a
definition with mechanization in mind.

